## **Preliminary communication**

## 1,3-MIGRATION OF CHLORIDE AND AZIDE SUBSTITUENTS WITHIN ORGANOSILICON CATIONS, AND ANCHIMERIC ASSISTANCE BY THE AZIDO GROUP

COLIN EABORN\*, PAUL D. LICKISS, SABAH T. NAJIM and M. NOVELLA ROMANELLI School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received July 23rd, 1986)

## Summary

Migration of the Cl substituent takes place when  $(Me_3Si)_2C(SiMe_2Cl)(SiEt_2I)$  or  $(Me_3Si)_2C(SiEt_2Cl)(SiMe_2I)$  reacts with AgBF<sub>4</sub>, the product in each case being a mixture of  $(Me_3Si)_2C(SiEt_2Cl)(SiMe_2F)$  and  $(Me_3Si)_2C(SiEt_2F)(SiMe_2Cl)$ , and analogous migration of N<sub>3</sub> occurs in the corresponding reaction of  $(Me_3Si)_2C(SiEt_2N_3)(SiMe_2Br)$ . Anchimeric assistance by the N<sub>3</sub> group facilitates the solvolysis of  $(Me_3Si)_2C(SiMe_2N_3)(SiMe_2Br)$ .

It has previously been shown that in abstraction of the group X from compounds of the type  $R_2C(SiMe_2Z)(SiR'_2X)$  ( $R = Me_3Si$  throughout) by silver salts (as in reactions with various other electrophiles) 1,3-migration of the Z group can take place, to give the rearranged product  $R_2C(SiMe_2Y)(SiR'_2Z)$ , either exclusively or along with the unrearranged product  $R_2C(SiMe_2Z)(SiR'_2Y)$  [1]. Such reactions are thought to involve formation of the bridged species (I), which is then attacked by the nucleophile  $Y^-$  at either the  $\alpha$ - or  $\gamma$ -Si (attack at the least hindered centre usually being favoured) and rearrangement has been shown to occur for Z = Me [2], OMe [3], and CH=CH<sub>2</sub> [4]. Calculations on model cations indicate the bridging as in I should be very effective for Z = Cl [5], and we have now demonstrated that the corresponding migration of Cl takes place, as does that of  $N_3$ .

Seemingly unaware of the earlier prediction of 1,3-Si to Si-bridging by Cl, Pope and Jones have interpreted the mass spectra of  $(Me_3SiCH_2)_nSiCl_{4-n}$  compounds in terms of significant stability of the four-membered ring species of type II [6].

Compounds 1-4 were made by the routes shown in Scheme 1.

When compound 1 was treated with  $AgBF_4$  in  $CH_2Cl_2$  for 5 min at room temperature the product after work-up (evaporation, extraction of the residue with pentane, filtration and evaporation of the extract) gave <sup>1</sup>H and <sup>19</sup>F NMR spectra which showed it to be an ca. 1/3 mixture of the rearranged fluoride  $R_2C(SiMe_2Cl)(SiEt_2F)$  and the unrearranged  $R_2C(SiMe_2F)(SiEt_2Cl)$ . (The <sup>1</sup>H



NMR. signals at  $\delta$  0.33(s), 0.49 (d, J 7.5 Hz), 0.66 (d, J 0.6 Hz) and 0.94–1.18(m) were attributed to SiMe<sub>3</sub>, SiMe<sub>2</sub>F, SiMe<sub>2</sub>Cl, and SiEt<sub>2</sub> protons, respectively, and were in 13/3/1/8 integration ratio; <sup>19</sup>F signals (in CCl<sub>4</sub> relative to CFCl<sub>3</sub>) at  $\delta$  –143.0 (m, J 7.3 Hz) and –160.2 ppm (m, J 10.7 Hz) were attributed to SiMe<sub>2</sub>F (cf.  $\delta$ (F) –144.7 ppm for R<sub>3</sub>C(SiMe<sub>2</sub>F)) and SiEt<sub>2</sub>F (cf. –160.4 for R<sub>3</sub>C(SiEt<sub>2</sub>F)) and were in a 1/3 integration ratio. Linked GLC-mass spectrometry gave only one peak, with a mass spectrum consistent with either of the isomeric fluorides [*m/z* 341 ([*M* – Me]<sup>+</sup>), 327 ([*M* – Et]<sup>+</sup>). A similar reaction carried out in Et<sub>2</sub>O gave virtually identical results except for the formation of small amounts of side-products that gave no <sup>19</sup>F NMR signals.

When 2 was treated in  $CH_2Cl_2$  with AgBF<sub>4</sub>,  $R_2C(SiMe_2Cl)(SiEt_2F)$  and  $R_2C(SiMe_2F)(SiEt_2Cl)$  were again formed, but in ca. 1/2 ratio (i.e., in this case the rearranged product predominated), demonstrating that the cation I (R' = Et, Z = Cl) can be generated from both directions. Although the observed product isomer ratios are only approximate, it seems likely that they do differ somewhat for the reactions of 1 and 2, whereas on the simplest picture of the reaction, with ions of type I becoming fully isolated before reacting with the nucleophile, 1 and 2 would be expected to give rise to the same product ratio. However it is possible, for example,

(a) 
$$R_2CCl_2 \xrightarrow{(i)\chi(i)} R_2C(Cl)(SiMe_2H) \xrightarrow{(iii)\chi(iv)} R_2C(SiEt_2Cl)(SiMe_2H) \xrightarrow{(v)} R_2C(SiEt_2Cl)(SiMe_2I)$$
  
(1)

*Reagents*: (i) BuLi in hexane/THF/Et<sub>2</sub>O/pentane at  $-110^{\circ}$ C; (ii) Me<sub>2</sub>SiHCl; (iii) BuLi in hexane/THF/Et<sub>2</sub>O/pentane at  $-100^{\circ}$ C; (iv) Et<sub>2</sub>SiCl<sub>2</sub>; (v) I<sub>2</sub> in CCl<sub>4</sub>.

1225

(b) 
$$R_2CCl_2 \xrightarrow{(i)(ii)} R_2C(Cl)(SiEt_2H) \xrightarrow{(iii)(iv)} R_2C(SiMe_2Cl)(SiEt_2H) \xrightarrow{(v)} R_2C(SiMe_2Cl)(SiEt_2I)$$
  
(2)

Reagents: (i) As in (a); (ii) Et<sub>2</sub>SiHCl; (iii) as in (a); (iv) Me<sub>2</sub>SiCl<sub>2</sub>; (v) I<sub>2</sub> in CCl<sub>4</sub>.

(c) 
$$R_2C(SiMe_2H)(SiEt_2Cl) \xrightarrow{(1)}{\rightarrow} R_2C(SiEt_2N_3)(SiMe_2H) \xrightarrow{(1)}{\rightarrow} R_2C(SiEt_2N_3)(SiMe_2Br)$$
  
(3)

Reagents: (i) NaN<sub>3</sub> in MeCN; (ii) Br<sub>2</sub> in CCl<sub>4</sub>.

*(*1)

(d)  $R_2C(Cl)(SiMe_2Br) \xrightarrow{(i)} R_2C(Cl)(SiMe_2N_3) \xrightarrow{(ii)(iii)} R_2C(SiMe_2N_3)(SiMe_2Cl)$ (4)

Reagents: (i) NaN<sub>3</sub> in MeCN; (ii) BuLi in THF/Et<sub>2</sub>O/pentane at -110°C; (iii) Me<sub>2</sub>SiCl<sub>2</sub> at -80°C.

SCHEME 1

the  $BF_4^-$  liberated near the Si centre from which  $I^-$  is abstracted is able to attack that centre to some extent before diffusing away; this would tend to give less of the rearranged product in both cases than would be expected on simple steric grounds.

The azide 3 reacted correspondingly with AgBF<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> during 5 min at room temperature to give a 1/3 mixture of the rearranged R<sub>2</sub>C(SiMe<sub>2</sub>N<sub>3</sub>)(SiEt<sub>2</sub>F) and the unrearranged R<sub>2</sub>C(SiMe<sub>2</sub>F)(SiEt<sub>2</sub>N<sub>3</sub>). The <sup>19</sup>F NMR spectum (in CCl<sub>4</sub>) consisted of two multiplets, at  $\delta$  -143.4 (SiMe<sub>2</sub>F) and -160.3 (SiEt<sub>2</sub>F), in 3/1 integration ratio; the <sup>1</sup>H NMR spectrum (360 MHz) in CCl<sub>4</sub>) showed signals at  $\delta$ 0.289 (d, J 0.5 Hz), 0.293 (d, J 0.4 Hz), 0.45 (d, J 7.4 Hz), and 0.52 (d, J 0.5 Hz), in 2/6/3/1 integration ratio, assigned to SiMe<sub>3</sub>, SiMe<sub>3</sub>, SiMe<sub>2</sub>F, and SiMe<sub>2</sub>N<sub>3</sub> protons, respectively, along with a complex multiplet at  $\delta$  0.88-1.25 from the SiEt<sub>2</sub> protons. Linked GLC-mass spectrometry gave only one peak, with a mass spectrum consistent with either isomeric product; m/z 348 ([M - Me]<sup>+</sup>), 334 ([M - Et]<sup>+</sup>).

Since the Cl and  $N_1$  ligands bridge effectively in cations of type I it was to be expected that they would provide substantial anchimeric assistance to the leaving of the group X in compounds of the type  $R_2C(SiMe_2Z)(SiMe_2X)$  (Z = Cl or N<sub>3</sub>). This was shown to be the case for the  $N_3$  ligand in the reactions of  $R_2C(SiMe_2N_3)$ -(SiMe, Br) (4), with MeOH and CF<sub>4</sub>CH<sub>2</sub>OH. In the reactions at 35°C with MeOH in the presence of three equivalents of  $Et_3N$  the half life is ca. 100 min, and the product is  $R_2C(SiMe_2N_1)(SiMe_2OMe)$ . (In the absence of Et<sub>1</sub>N the rate is a little higher and the reaction proceeds further to give  $R_2C(SiMe_2OMe)_2$ , these effects being attributable to assistance by the formed HBr to the leaving of  $Br^{-}$  and  $N_{3}^{-}$ ). In the presence of 0.03, 0.06, and 0.12 M NaOMe (but without the Et<sub>3</sub>N) the half lives are ca. 115, 93, and 89 min, respectively; i.e. the NaOMe has only a small effect, which indicates that the reaction is not of the  $S_N$  type. Furthermore the reaction with the less nucleophilic but more electrophilic alcohol CF<sub>3</sub>CH<sub>2</sub>OH is much faster, the half life being very roughly 0.5 min, so that the reaction is > 150 times as fast as that with MeOH, which indicates that the solvolysis is of the  $S_{N}1$ type, involving rate-determining formation of the cation I (R' = Me,  $Z = N_3$ ). Compound 4 is very much more reactive than R<sub>3</sub>CSiMe<sub>2</sub>Br, probably by a factor of at least  $10^4$  since even the *iodide* R<sub>3</sub>CSiMe<sub>2</sub>I has a half life of ca. 13 days in MeOH at 50°C and reacts even less readily with CF<sub>3</sub>CH<sub>2</sub>OH [7]; the actual factor is probably much larger. However, the assistance by the N<sub>3</sub> group, although much larger than that by a vinyl group, is substantially smaller than that by an OMe group, since 4 is markedly less reactive than R<sub>2</sub>C(SiMe<sub>2</sub>OMe)(SiMe<sub>2</sub>Br) towards MeOH, the half life for the latter bromide being only ca. 17 min even in 9/1dioxane/MeOH containing 0.05 M NaOMe.

As expected from the above analysis, in reactions with KSCN or KOCN in MeCN, which are believed to involve direct bimolecular substitution, so that the anchimeric assistance cannot operate, **4** is not especially reactive, reacting only ca. 17 times as rapidly as  $R_3CSiMe_2Br$ , this factor being similar to that between  $R_2C(SiMe_2OMe)(SiMe_2CI)$  and  $R_3CSiMe_2CI$ .

Acknowledgments. We thank the S.E.R.C. for support, Dr. A.G. Avent for the NMR spectra, and Mr. A.M. Greenway for the analyses by linked GLC-mass spectrometry. S.T.N. thanks the Ministry of Higher Education of Iraq and the University of Basrah for awards of Scholarships.

## References

- 1 C. Eaborn, J. Organomet. Chem., 239 (1982) 93; and in H. Sakurai (Ed.), Organosilicon and Bioorganosilicon Chemistry, Ellis Horwood, Chichester, 1985, pp. 123-130, and references therein.
- 2 C. Eaborn, D.A.R. Happer, S.P. Hopper and K.D. Safa, J. Organomet. Chem., 188 (1980) 179.
- 3 C. Eaborn, P.D. Lickiss, S.T. Najim and M.N. Romanelli, J. Chem. Soc., Chem. Commun., (1985) 1754.
- 4 G.A. Ayoko and C. Eaborn, J. Chem. Soc., Chem. Commun., (1986) 630.
- 5 A.J. Kos, quoted by C. Eaborn and D.E. Reed, J. Chem. Soc., Chem. Commun., (1983) 495.
- 6 K.R. Pope and P.R. Jones, Organometallics, 3 (1984) 354.